MS IN COMPUTER SCIENCE PROGRAM
INDEPENDENT STUDY ABSTRACT

Student Name: Andrew B. Sudell

Project Title: Design and Implementation of a
Tuple Space Server for Java

Advisor: Edward J. Segall

Date: 10 December 1998

Abstract

Linda is a language for coordinating parallel processes via a Tuple Space shared
memory. The Linda model is examined as well as issues involved in implement-
ing a Java based Tuple Space Server. Finally a prototype of a Java based Tuple
Server is developed addressing the issues of on-line optimization, segmentation
of the Tuple Space and the adaptation of Linda semantics to Java.



MS IN COMPUTER SCIENCE PROGRAM
INDEPENDENT STUDY EVALUATION FORM

Part 1.

Student Name: Andrew B. Sudell

Semester of Independent Study Registration: Spring 1998
Date of Completion: 10 December 1998

Project Title: Design and Implementation of a

Tuple Space Server for Java

Advisor Name: Edward J. Segall

Part 2.
Grade:

Advisor Evaluation:

Advisor’s Signature Date



Contents

1 Introduction 2
2 The Linda Coordination Language 3
2.1 Tuple Spaces . . . . . . ... 3
2.2 Linda Operations . . . . . . . . .. ... ..o 4
2.3 Building Parallel Programs with Linda . . . . . . .. .. ... .. 5
3 Designing a Tuple Space Server 7
3.1 Matching Tuples . . . . . .. ... .. ... 7
3.2 Partitioning the Tuple Space . . . . ... ... ... ... .... 8
3.3 Searching Subspaces . . . .. ... ... ... ... ... 9
3.4 Multi-Key Search . . . . . .. ... . o 10
3.5 Distributing the Tuple Space . . . . ... . ... ... ... ... 11
4 Implementation Issues 13
4.1 Language Binding . . . ... ... ... o oL 13
4.2 Tuple Server Design . . . . . . ... ... . oL 15
4.3 Processes . . .. ... 17
5 Conclusion and Observations 18



Chapter 1

Introduction

Linda is a parallel processing coordination language developed largely by the
Linda Group at Yale University [Lin], which is a popular system for parallel
and distributed computing. However, traditional Linda implementations have
been embedded in host languages via dedicated compilers and preprocessors.
Optimization has been, by and large, via static code analysis. This use of
pre-compilation has been viewed by Carriero and Gelernter as a distinguishing
feature of Linda.

The “language” in “coordination language” distinguishes a system
like Linda from a coordination [library — for example, a message
passing library like PVM. [CG93]

However, Linda implementations have been built [Seg93] avoiding the need for
pre-compilation and providing for online optimization.

Java [AG96] is a new and rapidly evolving programming language with built
in support for networking and concurrent programming. So, it is interesting to
adapt Linda to the Java Language, while avoiding the need for pre-compiling so
as to take advantage of the concurrent efforts of others to enhance and improve
Java systems. In fact, a number of commercial systems [Mic98] [Sys| are being
developed to facilitate building distributed systems in Java via a Linda-like Tu-
ple Space shared memory. While these systems are strictly speaking not Linda
implementations, their use of Linda-like tuple spaces as a model for anonymous
interprocess communication among distributed Java applications lends some
credibility to our goals.

In this paper, we examine the Linda language in some detail, as well as
some of the parallel computing models that can be (and often are) implemented
in Linda. We then examine how these characteristics effect the design and
optimization of the Tuple Space. Finally we develop a prototype of a Linda
implementation in Java which takes advantage of online optimization of the
Tuple Space.



Chapter 2

The Linda Coordination
Language

2.1 Tuple Spaces

There are a number of ways one could build a parallel processing system. The
most apparent way, at least to software practitioners, is to build shared memory
machines with many processors. In this way, the semantics of data access are
unchanged from those of conventional sequential programming, and the pro-
grammer need only deal with the issue synchronizing access to that data How-
ever, this approach is limited to the availability of such solutions from hardware
vendors and may only be applied to such systems. In general, such systems
tend not to be inter-operable and scaling is limited to the availability of specific
hardware from specific vendors. Moreover, software implemented on such spe-
cialized systems is often not easily ported to newly available but incompatible
systems.

Assuming that one opts for a software solution dealing with individual pro-
cessors which do not directly share memory, perhaps the next most apparent
solution is to pass data back and forth between processes on separate proces-
sors via a message passing system. In fact, such messages passing systems
exist [PVM] [MPI] and are quite popular in the parallel processing world

Linda provides a third alternative called a Tuple Space shared memory. A
Tuple Space memory consists of a number of tuples, that is ordered sets of typed
values much like tuples in relational database theory, which live outside each
process, but are accessible to each process. Unlike shared memory systems and
like message passing systems, data must be copied between the individual pro-
cesses and the tuple space. Like hardware shared memory systems, and unlike
message passing systems, shared data is accessed directly and anonymously by
each process, and processes do not communicate directly with one another.

Linda’s tuple space model is interesting to parallel and distributed processing
because over time experience has shown [CG93] that Linda is at least compet-



itive with message passing in speed, and in some ways more expressive than
message passing. More over, since all communication is between the process
and a single virtual entity (the Tuple Space), the anonymous nature of inter-
process communication in Linda is more amenable to adaptive parallelism than
message passing.

2.2 Linda Operations

The Linda language consists of only six simple operations by which the process
interacts with the Tuple Space. These operations are out, in, rd, inp, rdp, and
eval.

The out operator places a tuple into the tuple space. For example, out (5)
places a tuple consisting of a single integer, 5, into the tuple space. Likewise
out ("foo", 12.7) places a tuple consisting of the string “foo” and the floating
point number 12.7 into the tuple space. In addition to constants, variables may
also be used, so if the variable s is the string “x” and i is the integer 10, then
out (s, i) is equivalent to out ("x", 10).

The in operator is the dual of out and removes a tuple from the tuple space.
Unlike out, in is a blocking command and if no matching tuple is found, will
block until another process outs a matching tuple So, in("x", 10) would re-
move the tuple which had been “outed” before. In addition to constants and
variables, Linda support the notion of a formal variable. Formals may match
any value of the same type and have the side effect of setting the value of the
formal. So, in("x", 7i) could match either the tuple ("x", 5) or the tuple
("x", 6), and have the side effect of setting i to either 5 or 6.

The rd (or read) operator is similar to the in operator. rd will block until it
finds a matching tuple, however it will not remove the matching tuple from the
tuple space.

In addition to the blocking queries, in and rd, Linda provides non-blocking
queries inp and rdp (in predicate and read predicate). These operators act
similar to in and rd, but return immediately with a true or false status indicating
if a matching tuple was found.

Finally, Linda provides eval (evaluate) which is similar to out, but capable
of creating processes. In addition to supporting actual and formal variables,
eval supports the use of functions which return values. For each tuple element
which is a function, eval will create a new process to evaluate the function.
Once all functions have been evaluated, eval will place the resulting tuple into
the tuple space. For example, if the function f (x) computes the factorial of x,
then eval(5, f(5)) spawns a new process to evaluate f(5) and then places
the tuple (5,120) into the tuple space.

There are several fine points of Linda worth considering. First of all, since
out is asynchronous, it is not guaranteed that the an outed tuple will be in the
tuple space and available for matching either when the out operation returns or
any finite time later. So in the following code

out ("mytuple", 5)



x = rdp("mytuple", 7i)
in("mytuple", ?i)

While the in will block until the tuple (or some other matching tuple) arrives,
there is no guarantee that the rdp will match the tuple even if no other processes
exist. Thus the value of x is indeterminate. Second, while functions within evals
ultimately return values, which result in tuples being placed into the tuple space,
they may also create side effects. In fact the use of eval to create processes, which
in turn perform other Linda operations, is not only acceptable but commonplace.
Without such side effects, the tuplespace could not be used to provide for parallel
processing unless some other external method of process creation were used.
Finally, while a formal value can match any similarly typed value, it must match
an actual value, since one side effect is to update the formal with the matched
value.

2.3 Building Parallel Programs with Linda

Before considering how to implement Linda, it is probably prudent to consider if
and how Linda allows us to write parallel programs. One reasonable taxonomy
of parallel programs [CG89] divides parallel programs into three broad classes:
result parallelism, agenda parallelism, and specialist parallelism. In a result
parallel program, the program is structured around a set of required results and
individual processes are responsible for each of results. In an agenda parallel
program, the problem is broken down into an agenda of tasks, often called a
“bag of tasks”. A number of non-specialized worker processes are spawned, who
each continue grabbing tasks, working them and returning the result, so long as
outstanding tasks exist. In a specialist parallel program, a number of specialized
processes are started. FEach can perform some part of the problem and must
pass the intermediate results onto another specialist until the problem is solved.

While any particular actual program is likely to demonstrate aspects of each
form of parallelism, it is sufficient to show that we can accomplish each using
Linda.

Perhaps the easiest form of parallelism to implement in Linda is agenda
parallelism. In this case, one need only implement a bag of tasks as a multi-set of
task tuples. Processes can add tasks to the bag by executing out ("task list",
task-description) and workers can fetch tasks from the bag by executing
in("task list", 7task).

Without much more difficulty, one can implement parallelization for special-
ization. It’s most natural to think of using message passing to do so. However,
one can easily implement a message queue in Linda, achieving the same ef-
fect. A simple queue of messages for a single process might consist of a series
of tuples ("queue", 0, message-0), ("queue", 1, message-1), ("queue",
2, message-2), etc. Another tuple is used to keep track of the tail of the
queue, ("queue-counter", 2), where the queue counter is the index of the
last message added to the queue. Processes may add messages to the queue by
incrementing the queue counter and adding new tuple to the queue.



in("queue-counter", 7n)
n=n+1

out("queue", n, message)
out ("queue-counter", n)

Note that if only one queue counter tuple exists, the fact that in both blocks
and removes the tuple effectively serializes access to the counter. The receiving
process can then simply in successive messages, assuming that a blocking read
is acceptable. Alternately, the reader could perform a non-blocking poll via a
series of inp operations until a message arrives.

Finally we can consider result parallelism. In this case, the result takes
the form of some arbitrary data structure or structures. Without too much
imagination, we can see that if we can implement the data structure in a con-
ventional programming language we are likely to be able to implement it with
some combination of arbitrarily named variables and arrays. Simple variables
can be implemented as tuples with the variable name as the first element in
the tuple. Distributed arrays can be implemented in Linda by a series of tuples
containing the array name, the array indexes and the value as elements. For
example, one can implement a n by m matrix as a series of n X m tuples of
the form ("matrix-name", i, j, value), where i and j are indexes into the
matrix. In fact, just about any data structure that can be implemented in a
conventional language can be implemented in Linda, as well as a few that have
no conventional equivalent [CGL85].



Chapter 3

Designing a Tuple Space
Server

3.1 Matching Tuples

The most basic operation of a Tuple Space server is matching tuples. The Linda
operators can be divided into two basic sets, those that place tuples into the
tuple space (out and eval) and those who remove or copy tuples from the tuple
space (in, inp, rd, and rdp). In considering the interaction between a Linda
process and the Tuple space, it is useful to think of out and eval as placing
tuples into the tuple space, but in, inp, rd, and rdp placing anti-tuples, that is
tuple patterns or templates which exists in the tuple space until a matching tuple
arrives. Thus we can speak of “tuple matching” as either a tuple rendezvousing
with a existing anti-tuple or as a anti-tuple rendezvousing with an waiting tuple,
depending on the order of operation. In either case, the semantics of matching
are the same.

In on order to match, then, a tuple/anti-tuple pair must first of all must in
fact be a tuple and an anti-tuple, i.e. they must differ by polarity. Secondly,
they must have the same number of elements. This measure is referred to as the
arity of the tuple. Third tuple members are strongly typed by definition, so the
type of each element in each tuple of the pair must match. So, for an example,
a tuple who’s type signature is (int, int, string) can only match an anti-
tuple who’s signature is also (int, int, string) and not an anti-tuple who'’s
signature is (int, string, int) or (string, float). Finally, the individual
parameters of the tuples must match.

Matching the individual parameters, however, is complicated by the exis-
tence of formal parameters, since a formal can match any actual value of the
same type, but can never match another formal. Either tuples or anti-tuples
may contain formal parameters as well as actual values. However, in practice,
formals rarely if ever appear in tuples, since they are to some intent and pur-
poses the equivalent to wild cards and thus serve well in query like operations



but poorly in outs and evals. There are potentially a number of ways to match
parameter values, but a framework exists [Seg93] which deals with the issue in
a straight forward and expeditious manner.

Consider the subset of all tuples and anti-tuples with the same arity and
signature. Assign each a actual/formal pattern, consisting of a bit field of arity
bits such that the bit is set for a actual value in the corresponding position
or unset if the corresponding parameter is a formal. For example the pattern
for the tuple ("foo", 1, ?a) is 110 and the pattern for (?a, 7b, 12, ?d) is
0010. A tuple/anti-tuple pair can be said to be pattern compatible if the inclusive
bitwise or of their patterns yields a pattern of all ones. So, for example consider
three tuples t1, t2 and t3. t1is (1, 2, ?i) and has a pattern of 110. t2 is
(1, ?i, 3) and has a pattern of 101. Finally t3 is (1, ?j, ?7i) and has a
pattern of 100. t1 and t2 are pattern compatible since the bitwise or of their
patterns is 111. However, neither t1 nor t2 is pattern compatible with t3 since
the resulting patterns are 110 and 101, respectively.

Once we know that the pair is pattern compatible, we must still compare
the individual parameters for equity. However, there is no desire to attempt
to compare any parameters in which a formal is matching an actual, since this
is an unnecessary step and in some implementations my involve attempting to
compare potentially undefined values. Rather we need only compare pairs of
parameters if both are actual values. So, we can build a must match pattern by
taking the bitwise and of the two actual/formal patterns. Only those parameters
for which the corresponding must match pattern bit is set need be compared.
Continuing the example, the must match pattern for t1 and t2 is 100, so only
the first parameters of each need actually be examined. The list of parameters
for which the must match pattern is set, is therefor referred to as the must
match values. In conclusion, a tuple and a template match if

they differ in polarity
e they have the same arity

e they have the same type signature

their patterns are compatible

and their must match values are equal.

3.2 Partitioning the Tuple Space

Even with a simple and efficient way to match tuples, for many programs,
there will be many tuples to match. Sequentially matching all tuples or anti-
tuples in the tuple space would be a huge waste of time and largely defeat the
purpose of parallelizing the program in the first place. Thus it is desirable to
examine patterns of tuple matching and attempt to minimize the number of
tuples examined in any match.



As we have seen above, No tuple/template pair can match if they differ in
arity or signature. Nor can they match if they do not differ in polarity. It
has been noted [Car87] that this allows us to partition the tuple space into a
number of orthogonal subspaces. For any given operation, only the single sub-
space whose arity/signature match need be examined for any given operation.
However, it is possible to limit our search further. Consider a program which
exports the following tuples

out ("foo", 5)
out ("bar", 12)

and then later retrieves them as

in("foo", 7x)
in("bar", 7y)

Assuming the rest of the program acts in a similar fashion, it is clear that
these operations also consist of separate sets of tuples (or out sets) for which
there is no overlap between their potentially matching templates. In fact, many
common patterns of Linda usage [CGL85] [CG89] create many such patterns of
tuple usage. This presents an opportunity to consider further subdividing the
tuple space.

Partitioning the tuple space by constants presents us with both a challenge
and new opportunity. In classical Linda implementations, host languages were
extended via pre-processors to embed Linda operations into the language. This
allowed for static analysis of the code to detect the use of constants [Car87].
However, out goal is to use only runtime optimizations in our Java implementa-
tion. In most cases, the use of constants by the programmer is quite intentional.
Thus some Linda implementations, including that on which we are most heavily
based [Seg93], allow the programmer to add a constant qualifier to the type of
a parameter. Thus allowing us to further partition the tuple space if desired,
following the programmer’s hints. This additionally affords two additional po-
tential optimizations. By giving control of this partitioning to the programmer,
some level of user control of the optimization is allowed for fine tuning of partic-
ular applications. Secondly, if we partition the tuple space by constants as well
as by arity/signature, then all tuples or templates in a subspace will naturally
have the same value in that parameter. Thus we can drop that parameter from
the must match pattern.

3.3 Searching Subspaces

Given that we can reduce tuple matching to just comparing tuples within a
limited subspace, one would still not want to simply perform a linear search
of the subspace. Therefore, we should consider how one might organize the
subspace, in order to make tuple matching quick and efficient.

There are a number of cases in which the out set can be quite simply or-
ganized and easily managed. As the simplest case consider a out set in which



all parameters are constants. One might, for example implement a mutex using
in("mutex") to acquire a lock and out ("mutex") to release it. In this case one
could ignore the tuples altogether and simply track the number of outstand-
ing tuples in the space in a single integer, incrementing the count for outs and
decrementing for ins and blocking ins when the count reached zero. That is,
the out set could be reduced to a semaphore.

Now consider an out set in which one or more parameters are non-constant,
but where all ins match formals for all non-constant parameters and all outs
have only actuals for non-constant parameters. There would still be no need
to match any actual values, and the managing the out set presents little more
difficulty. Consider the out set defined by the operations out ("foo", i) and
in("foo", ?7j). This could be implemented without too much trouble as a
queue. outs would append the non-constant value or values to the tail of the
queue. ins would delete the head of the queue or block if the queue is empty.

Once the out set contains patterns in which we must match one of more ac-
tuals, then one must finally index the out set in some way. If only one parameter
must ever be matched, then this parameter is the logical choice for a key in a
index or hash table of tuples. If a larger number of parameters must always be
matched, then a composite key can be used. However, a composite key works
only if the must match pattern is a constant. Consider the case in which one
process creates a tuples for the form out("foo",i,j). Other processes create
two templates of the forms in("foo", 5, ?i) and in("foo", ?j, 7). In this
case, called a hybrid set, no single key can be used to index both searches.

3.4 Multi-Key Search

Since we can not take advantage of simple solutions such as semaphores and
queues, which require static analysis of the Linda program, we need to consider
other schemes for managing the out sets which are amenable to online optimiza-
tion. In addition we prefer to use a solution which addresses the issue of hybrid
sets. Fortunately, such a solution exists in Multi-Key Search [Seg93] and has
been implemented previously in Java [Des98].

Multi-key Search (MKS) is essentially an adaptation of secondary indexes.
When matching a template against the tuples in an out set (the same logic will
also work for matching tuples against waiting anti-tuples), one must consider all
tuples whose actual /formal patterns are compatible with the template’s pattern.
For each of those patterns, one must consider the value of all parameters in the
must match pattern for the combination of the template’s pattern and the tuple
pattern under consideration. Therefore if we build a dictionary, in which each
tuple is indexed once for each compatible pattern, and for which the key for that
index is the composite of the compatible pattern, the corresponding must match
pattern and the values of the must match variables of the tuple, we can find
search the indexes of the dictionary for matching tuples in at worst n searches
where n is the number of compatible patterns for the template. Since the tuple
space is a multi-set, i.e. multiple identical tuples could exist, each index points

10



not to a physical tuple but to a list of tuples with identical indexes. Upon
removal the tuple is removed from the list, and the index node deleted only if
the list is then null.

In many Linda programs only a few fixed patterns are actually used. At
first blush, one might assume that MKS must bear a much higher overhead
maintaining indexes than a scheme that benefited from static code analysis.
However, this is not necessarily the case. Since the index for any given pattern
is unneeded until a template arrives which has that pattern, once can defer
creating the index until the first template arrives. Even for a out set with a
small arity, this can produce a significant savings.

Consider an out set of arity 2. For all compatible template and tuple pat-
terns, the must match patterns are given below.

Tuple Pattern
Template Pattern | 00 01 10 11

00 - - - 00
01 - - 00 01
10 - 00 - 10
11 00 01 10 11

So in the worst case, a tuple with two actuals would be indexed four ways
and once using both parameters in the key. But if only the patterns 01 and 10
were ever used, no tuple would need more than two indexes. It is worthwhile to
note that many of the indexes in use are in fact indexes on no fields at all. In
that case the list of tuples with that index degenerates into the queue that we
would have opted to use has we been using static analysis.

3.5 Distributing the Tuple Space

While our initial prototype runs on a single processor, or at least a single Java
Virtual Machine which may its self be run on a multiprocessor, the whole point
of Linda is parallel processing. Thus ultimately we will want the tuple space
available from multiple processors.

There have been a number of schemes for distributing the tuple space used
in various Linda implementations. Perhaps the simplest is to replicate the entire
tuple space on each processor as was done in the S/Net implementation [Car87].
This means that any operations which change the state of the tuple space (out,
eval, in, and inp, but not rd nor inp) must be broadcast to all nodes and
synchronized. This can serve as a bottleneck in performance.

Another scheme used by some Linda and Linda-like implementations, in-
cluding Laura [Tol92] is to build a rectangular grid of tuple servers. Each server
is connected to an “out bus” which runs in one direction and an “in bus” which
runs in the other. out (and eval) operations are broadcast on the the out bus
to which a process’ local tuple server is connected and the tuple replicated on
each server on that bus. Likewise in (and rd) operations are broadcast to the

11



local in bus and performed by all servers on that bus. Since the buses run or-
thogonally, every tuple and every template meet on exactly one node. At best
a n processor system can perform /n parallel searches.

Better yet is Hash to Rendezvous. If we divide the tuple space into subspaces
based on out sets as a function of arity, signature, and potentially constant
values, we know that any search need only involve a single subspace. We can
assign each subspace to a processor based upon a hash calculated on the out set
signature. In this way, we know a priori which processor is the only processor
on which we need search. Tuples and Templates can then “rendezvous” on
their assigned processor, via independent efforts. For any given match at worst
three messages must be sent. First an original in that blocked, second an out
that matches, and finally the return to the in. Only the processors where the
operations are initiated and the processor holding the subspace need be involved.
Thus in the best case, all processors may be involved in parallel searches at the
same time, assuming that the number of out sets used by the application is large
with respect to the number of processors and the hash function used results in
a uniform distribution.

12



Chapter 4

Implementation Issues

4.1 Language Binding

The first issue that appears when adapting the Linda language to a Java class
library is that the classic pre-processor implementations can hide a lot of detail
behind the pre-processor and therefor their syntax is not bound as tightly by the
host language. In our case, our language binding must not only feel like Java,
it must be Java. This presented a minor issue in that while Java is capable of
polymorphism, its primitive types are not. Therefore one could not support the
primitive types directly without a plethora of constructors for tuples. In addition
the need to support formal variables and to allow programmers to designate
actuals as constants, required type modifiers beyond those provided for in Java.
In the implementations on which we based this project [Seg93] [Des98], this was
dealt with by passing all tuple parameters as strings which would be parsed to set
the variables. As an alternative we opted to build a wrapper class, LindaParam,
which dealt with type modifiers but required the use of Java’s wrapper classes
for integer and floating types. In addition to float and int, the LindaParam class
also supports Java Strings as well as LindaFunctions.

Tuples themselves are implemented in the classes Tuple and Template, both
of which are implemented as subclasses of AbstractTuple, and contain an array
of LindaParams as shown in figure 4.1. Tuples are instantiated with a variable
number of parameters, which is presently limited to four. One could, for example
build the tuple out ("matrix", i, j, value) as

out (new Tuple(new LindaParam(LindaParam.LINDA_CONSTANT,

"matrix"),

new LindaParam(LindaParam.LINDA_ACTUAL,
new Integer(i)),

new LindaParam(LindaParam.LINDA_ACTUAL,
new Integer(j)),

new LindaParam(LindaParam.LINDA_ACTUAL,
new Float(value))));

13



LindaPram
type
form
vaue

Abstract Tuple

params]]

arity()

polarity()

signature()
isCompatiblePattern()
matches()

hashK eyForPattern()

Figure 4.1: Tuple class hierarchy

Admitedly, this is a more awkward syntax than in an embedded Linda imple-
mentation.

The AbstractTuple class also implements the common methods to support
the TupleServer and it’s underlying Subspace, such as signature(), which
returns the type signature of a tuple; pattern(), which returns the tuple’s
actual/formal pattern, isCompatiblePattern(). which checks if a pattern is
compatible with this tuple’s pattern; matches(), which checks a tuple for a
match; and hashKeyForPattern(), which builds a hash key for the must match
variables for a given compatible pattern. For the most part these are straight
forward implementations of the algorithms discussed in the previous chapter.

The one method of AbstractTuple, which requires some mention is hash-
KeyForPattern(). In previous implementations of MKS, AbstractTuple di-
rectly calculated an integer used to determine the hash bucket, as a function of
its parameters. In this implementation, native Java Hashtables are used, on the
theory that unless they prove too inefficient, it is preferable to use native lan-
guage feature. Thus, hashKeyForPatterns merely returns a “stringification”
if its parameters to be used to form the hash key. Should the native hash al-
gorithm prove insufficient, a subclass of String could be built to override the
toHash() method.

Another issue was the assignment of values to formals upon the completion
of in, and rd operations. Unlike a pre-processed implementation, in our online

14



Subspace
Sub-

space
Hash
Table

Subspace

Subspace

Tuple Server

Figure 4.2: Tuple Server Data Structures

system one can not easily hide the implicit assignment. While it may have
been possible to perform this via Java Reflection, we opted to simply return
the matched tuple and allow the programmer to assign its value to the formal.
Upon reflection, this does not inhibit the use of the system, though it does
create some additional work for programmers.

4.2 Tuple Server Design

For the design of the TupleServer, its self, it was decided to partition into
a series of SubSpaces based upon the signature and arity of the tuples. A
single dictionary is kept with references to the individual SubSpaces as shown in
figure 4.2. Most tuple operations were simply passed through to the SubSpaces,
with the exception of eval, as discussed below. SubSpaces are created on
demand and the dictionary is keyed by the type signature of the tuples in the
subspace. SubSpaces are never destroyed.

The SubSpace is an implementation of the sequential MKS of [Seg93], using
a monitor built with synchronized methods. Linked lists of all Tuples and all
Templates are kept, to enable indexing new patterns as they are found to be
used. Two separate Hashtables are maintained for Tuples and Templates. The
major structure of the SubSpace is shown in figure 4.3. Each hash is indexed
by a string built of the pattern of a compatible anti-tuple or anti-template, the
pattern of the Tuple or Template being indexed and the must patch values

15



( Tuplelist )
( Template List )
4 SR SR
Tuple Template
List for akey Tuple Template List for akey
Hash Hash
( Table Table
Tuple Template
List for akey List for akey
p
Tuple Template
List for akey List for akey
SubSpace
AN J

Figure 4.3: Tuple Subspace Data Structures

of the pair. For example, the tuple ("mytuple", 5) would be indexed for the
template pattern 10 as the string “10:11:mytuple”. For the pattern 11, the same
tuple would be indexed as “11:11:mytuple,5”. For pattern combinations with
must match patterns which are not full, many tuples may share the same keys.
In addition it is perfectly acceptable for multiple tuples (or anti-tuples) to exist
with identical values. Therefore the entries in the hash tables are linked lists
of tuples and not the tuples themselves. Upon insert lists are created for new
hash keys. Upon delete the tuples are removed from the lists, and the lists and
keys deleted if the list is then empty.

One point in the implementation of SubSpace which is worthy of examina-
tion is that of synchronization. For operations that consume tuples such as in
and rd (or their predicates), it is possible for the operation to block. In this case
the process must await the arrival of a matching tuple. Perhaps the simplest way
to deal with this in Java is to have the thread performing the operation wait
after adding it’s Template to the SubSpace. This raises the question of how to
reawaken the process. Unfortunately, Java provide only two forms of notify
in it’s monitor implementation. The notify method awakens one, potentially
randomly selected, thread waiting on a particular object. If synchronization is
done at the level of an entire SubSpace, that may potentially be a Template

16



awaiting a different Tuple. The only other option is to notifyAll, which awak-
ens all processes waiting on the object. In our implementation, we chose to use
notifyAll. This potentially creates a “mad rush” of processes rechecking for
tuples each time an arriving tuple does a notification. For this reason, the out
only performs the notification if at least one matching Template exists. How-
ever, for subspaces with large numbers of outstanding anti-tuples, this could
become a performance problem.

There are two interesting ways to expand the functionality of the server
significantly. First of all, a RMI tuple server could return remote references
to subspaces on foreign processors with little extra complexity. Coupled with
hash to rendezvous, this could be the basis for a distributed implementation.
Secondly, the subspace searches could be reworked to use parallel MKS [Seg93]
and more fine grained locking could be used. The optimization and distribution
of the Tuple Space Server are the most obvious areas for future enhancement.

4.3 Processes

In the classic Linda model, the preprocessor inserts code that runs at startup
to create the tuple space and then invokes a fixed user function. Additional
processes are then created via eval. In a similar bent, we have provided two
interfaces for creating processes.

Initial setup is done by the main method in LindaMain, which initializes
the TupleServer and starts the program’s main thread. The abstract class
LindaProgram provides a frame work for Linda Programs which LindaMain can
start. A class extending LindaProgram inherits a TupleSpace from it along with
methods to invoke Linda operations on the space. In addition, an extending
class must implement the method lmain which is called after setup with the
program’s arguments to begin execution of the user’s program proper.

However, unlike the main process, processes spawned by eval must return
useful parameters to the resulting tuple. Since in is not practical to pass the
reference to a function as part of the tuple in Java, the interface LindaFunction
provides the necessary syntactic sugar. When executing evals, the TupleServer
creates a thread for each LindaFunction, and creates a tuple for out once the
threads have finished. So, by creating tuples which contain LindaFunctions and
evaluating them, concurrent sub-threads can be created. Since it is executed as a
Java thread, LindaFunction is its self an extension of Java’s Runable interface.

17



Chapter 5

Conclusion and
Observations

The Linda coordination language provides a useful framework for building par-
allel programs which can be implemented without specialized hardware and is
competitive with message passing systems. Using Mult-Key Searching, and par-
titioning the tuple space we can build a usable Linda implementation without
relying on pre-compiling for embedding nor the use of static code analysis for
optimization. The potential exists to build a truly scalable system by imple-
menting Hash to Rendezvous. By adapting the Linda language slightly, we are
able to adapt our implementation to Java, Therefore once a true distributed
implementation exists, it can take advantage of the availability of Virtual Ma-
chines on most new high performance platforms to create a easily expandable
and highly scalable system.

Along the way of doing this independent study, we had the opportunity to
learn a great deal about Linda as well as a fair bit about parallel programs in
general. By examining the issues of tuple matching and distribution, we delved
deeper into issues closely related to the world of physical database design and
layout, which has been a personal interest for some time. In addition, we had
to opportunity to explore a number of interesting aspects of Java technology,
though many, such as Remote Method Invocation and Reflection, ended up not
being used in this project and would have needed a must more fully developed
project to have been of use. The effort was interesting, none the less. Finally we
had the opportunity to come to understand the notion of tuple space distributed
shared memories, a concept we were completely unfamiliar with at the start of
the project, and which in light of efforts such a JavaSpaces and T-Spaces, may
be experiencing a resurgence.

Source code for this project, along with electronic copies of this paper are
available at http://renoir.vill.edu/"asudell/csc9020.

18



Bibliography

[AG96]

[Car87]

[CG89)]

[CGO3]

[CGLS5)

[Des98|

[Lin]

[Mic98]

[MPI]

[PVM]

[Seg93]

Ken Arnold and James Gosling. The Java Programming Language.
Addison-Wesley, 1996.

Nicholas J. Carriero. Implementation of Tuple Space Machines. PhD
thesis, Yale University, Department of Computer Science, 1987.

Nicholas Carriero and David Gelernter. How to Write Parallel
Programs: A Guide to the Perplexed. ACM Computing Surveys,
21(3):323-357, September 1989.

Nicholas Carriero and David Gelernter. Linda and Message Passing:
What have we learned? Technical Report 984, Yale University, De-
partment of Computer Science, 1993.

Nicholas Carriero, David Gelernter, and Jerry Linchter. Distributed
Data Structures in Linda. Technical Report 438, Yale University, De-
partment of Computer Science, November 1985.

Atul A. Deshmukh. Implementation of Multiple Key Search (for
Linda) in Java. Independent study, Villanova University, Department
of Computer Science, 1998.

The Linda Group.
http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html.

Sun MicroSystems. Javaspaces specification, 1998.
http://chatsubo.javasoft.com/products/javaspaces/specs/index.html.

Message Passing Interface.
http://www.mcs.anl.gov/mpi/.

Parallel Virtual Machine.
http://www.epm.ornl.gov/pvm/pvm_home.html.

Edward J. Segall. Tuple Space Operations: Multiple-Key Search, On-
line Matching and Wait-Free Synchronization. PhD thesis, Rutgers
University, Department of Computer Science, 1993.

19



International Buisness Systems. T-Spaces.
http://www.almaden.ibm.com/cs/TSpaces/.

Robert Tolksdorf. Laura: A Coordination Language for Open Dis-
tributed Systems. Technical Report 1992/35, Technical University of
Berlin, Department of Computer Science, 1992.

20



